Multiple functions of inositolphosphorylceramides in the formation and intracellular transport of glycosylphosphatidylinositol-anchored proteins in yeast.
نویسندگان
چکیده
The mature sphingolipids of yeast consist of IPCs (inositolphosphorylceramides) and glycosylated derivatives thereof. Beyond being an abundant membrane constituent in the organelles of the secretory pathway, IPCs are also used to constitute the lipid moiety of the majority of GPI (glycosylphosphatidylinositol) proteins, while a minority of GPI proteins contain PI (phosphatidylinositol). Thus all GPI anchor lipids (as well as free IPCs) typically contain C26 fatty acids. However, the primary GPI lipid that isadded to newly synthesized proteins in the endoplasmic reticulum consists of a PI with conventional C16 and C18 fatty acids. A new class of enzymes is required to replace the fatty acid in sn-2 by a C26 fatty acid. Cells lacking this activity make normal amounts of GPI proteins but accumulate GPI anchors containing lyso-PI. As a consequence, the endoplasmic reticulum to Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. The GPI anchor containing C26 in sn-2 can further be remodelled by the exchange of diacylglycerol for ceramide. This process is also dependent on the presence of specific phosphorylethanolamine side-chains on the GPI anchor.
منابع مشابه
The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling
Glycosylphosphatidylinositol (GPI)-anchored proteins are secretory proteins that are attached to the cell surface of eukaryotic cells by a glycolipid moiety. Once GPI anchoring has occurred in the lumen of the endoplasmic reticulum (ER), the structure of the lipid part on the GPI anchor undergoes a remodeling process prior to ER exit. In this study, we provide evidence suggesting that the yeast...
متن کاملTwo endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins.
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchor...
متن کاملSaccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides.
The glycosylphosphatidylinositol (GPI)-anchored proteins are subjected to lipid remodeling during their biosynthesis. In the yeast Saccharomyces cerevisiae, the mature GPI-anchored proteins contain mainly ceramide or diacylglycerol with a saturated long-fatty acid, whereas conventional phosphatidylinositol (PI) used for GPI biosynthesis contains an unsaturated fatty acid. Here, we report that S...
متن کاملSaccharomyces cerevisiae CWH43 Is Involved in the Remodeling of the Lipid Moiety of GPI Anchors to Ceramides□D
The glycosylphosphatidylinositol (GPI)-anchored proteins are subjected to lipid remodeling during their biosynthesis. In the yeast Saccharomyces cerevisiae, the mature GPI-anchored proteins contain mainly ceramide or diacylglycerol with a saturated long-fatty acid, whereas conventional phosphatidylinositol (PI) used for GPI biosynthesis contains an unsaturated fatty acid. Here, we report that S...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society symposium
دوره 74 شماره
صفحات -
تاریخ انتشار 2007